Application of the global lateral density model UNB_TopoDens in modeling the RTM in the state of Paraná
DOI:
https://doi.org/10.5433/2447-1747.2025v34n2p193Keywords:
RTM, Newton's Integral, lateral densityAbstract
The RTM (or residual effect of topographic modeling) was calculated for the continental part of the state of Paraná, using 2535 points, which are part of a regular 5'x5' grid of spherical arc from the global relief model ETOPO1, associated with lateral density models, UNB_TopoDens (global) and Harkness (average global density 2670 kg/m³). The mathematical model used was Newton's integral for the material point. The RTM for each of the 2535 points considered a neighborhood of points within a circle with a radius of 210 km. The results for the calculated RTMs (for the two different density models) exceeded 2.3 mm (with an average value of about 1.7 mm), indicating the importance of considering RTM in precision altimetric studies. The tested density models, UNB_TopoDens (average density = 2630 kg/m³) and Harkness (average density = 2670 kg/m³), the variable value and the arbitrated average, varied by only 1.5% and had a correlation coefficient of 99.1%.
Downloads
References
BEAR, Gregory William; AL-SHUKRI, Haydar Jamil; RUDMAN, Andrew James. Linear inversion of gravity data for 3-D density distributions. Geophysics, v. 60, n. 5, p. 1354-1364, 1995. DOI: https://doi.org/10.1190/1.1443871
CARMICHAEL, Robert Samuel. Practical Handbook of Physical Properties of Rocks and Minerals. Boca Raton, Flórida: CRC Press, 1989.
HARKNESS, William. Solar parallax and its related constants, including the figure and density of the Earth. Washington, D.C.: Government Printing Office, 1891.
HARTMANN, Jens; MOOSDORF, Nils. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, v. 13, p. 1-37, 2012. DOI: https://doi.org/10.1029/2012GC004370
HECK, Bernhard; SEITZ, Klaus. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. Journal of Geodesy, v. 81, p. 121-136, 2007. DOI: https://doi.org/10.1007/s00190-006-0094-0
HEISKANEN, Weikko Aleksanteri; MORITZ, Helmut. Physical geodesy. San Francisco, USA: Freeman, 1967. DOI: https://doi.org/10.1007/BF02525647
HINZE, William J. Bouguer reduction density, why 2.67? Geophysics, v. 68, p. 1559-1560, 2003. DOI: https://doi.org/10.1190/1.1620629
LASKE, Gabi; MASTERS, Geoffrey; MA, Zhong; PASYANOS, Michael E. CRUST1.0: an updated global model of Earth's CRUST. Geophysical Research Abstracts. EGU2012-37431, p. 1-10, 2012.
MOLODENSKII, Mikhail Sergeyevich; EREMEEV, Vladimir Fedorovich; YURKINA, Marina Ivanovna. Methods for Study of the External Gravitational Field and Figure of the Earth. Jerusalem, Israel: Israeli Programme for the Translation of Scientific Publications, 1962.
MORITZ, Helmut. Advanced physical geodesy. Karlsruhe, Alemanha: Wichmann, 1980.
NAGY, Dénes; PAPP, Gábor; BENEDEK, János. The gravitational potential and its derivatives for the prism. Journal of Geodesy, v. 74, p. 552-560, 2000. DOI: https://doi.org/10.1007/s001900000116
NOAA. National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. Disponível em: https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/. Acesso em: 12 fev. 2025.
ODALOVIĆ, Olivera R.; GREKULOVIĆ, Svetlana M.; STARČEVIĆ, Milorad; NIKOLIĆ, Darko; DRAKUL, Marko S. T.; JOKSIMOVIĆ, Dragana. Terrain correction computations using digital density model of topographic masses. Geodetsky Vestnik, v. 62, n. 1, p. 79-97, 2018. DOI: https://doi.org/10.15292/geodetski-vestnik.2018.01.79-97
SHENG, Ming-Bo; SHAW, Chris; VANÍÄŒEK, Petr; KINGDON, Robert W.; SANTOS, Marcelo; FOROUGHI, Iraj. Formulation and validation of a global laterally varying topographical density model. Tectonophysics, v. 672, p. 45-60, 2019. DOI: https://doi.org/10.1016/j.tecto.2019.04.005
SJÖBERG, Lars. The effect on the geoid of lateral topographic density variations. Journal of Geodesy, v. 78, p. 34-39, 2004. DOI: https://doi.org/10.1007/s00190-003-0363-0
TENZER, Robert; HAMAYUN, Zia; PRUTKIN, Igor. A comparison of various integration methods for solving Newton's integral in detailed forward modelling. In: MERTIKAS, Stelios (ed.). Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia 135. Berlin, Heidelberg: Springer, 2010. p. 1 - 12. DOI: https://doi.org/10.1007/978-3-642-10634-7_48
TENZER, Robert; CHEN, Wenbin; BARANOV, Alexey A.; BAGHERBANDI, Mohammad. Gravity maps of Antarctic lithospheric structure from remote-sensing and seismic data. Pure and Applied Geophysics, p. 1-15, 2018. DOI: https://doi.org/10.1007/s00024-018-1795-z
TENZER, Robert; CHEN, Wenbin; RATHNAYAKE, Sanjeewa; PITOŇÁK, Miroslav. The effect of anomalous global lateral topographic density on the geoid to quasigeoid separation. Journal of Geodesy, v. 95, n. 12, p. 1-20, 2021. DOI: https://doi.org/10.1007/s00190-020-01457-6
TOUSHMALANI, Reza; SAIBI, Hamed. 3D gravity inversion using Tikhonov regularization. Acta Geophysica, v. 63, n. 4, p. 1044-1065, 2015. DOI: https://doi.org/10.1515/acgeo-2015-0029
VANÍÄŒEK, Petr; KRAKIWSKY, Edward John. Geodesy the Concepts. Amsterdam: North-Holland, 1986. p. 1-697.
VANÍÄŒEK, Petr; TENZER, Robert; SJÖBERG, Lars Erik; MARTINEC, ZdenÄ›k; FEATHERSTONE, Will Edward. New views of the spherical Bouguer gravity anomaly. Geophysical Journal International, v. 159, p. 460-472, 2004. DOI: https://doi.org/10.1111/j.1365-246X.2004.02435.x
WANG, Yong-Wei; SANCHEZ, Laura; Ã…GREN, Jonas; HUANG, Jin; FORSBERG, René; ABD-ELMOTAAL, Hani Ahmed. Colorado geoid computation experiment - overview and summary. Journal of Geodesy, v. 95, p. 1-15, 2021. DOI: https://doi.org/10.1007/s00190-021-01567-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Roosevelt de Lara Santos Junior

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright simultaneously licensing the work under the Creative Commons Attribution-NonCommercial 4.0 International license. This license allows third parties to distribute, remix, adapt, and develop the material in any medium or format for non-commercial purposes, giving due credit for authorship and initial publication in this journal.
The journal reserves the right to make normative, orthographic, and grammatical changes to the originals in order to maintain the standardized language and the credibility of the vehicle while still respecting the authors' writing style. Conceptual suggestions, changes, or corrections will be communicated to the authors when necessary.
The opinions expressed by the authors of the articles are their sole responsibility.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license.













