Protein analysis of polymorphonuclear leukocytes from domestic cats

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n6p1873

Keywords:

Felis catus, Granules, Neutrophils, Proteomics.

Abstract

Neutrophils are the first line of defense against microorganisms, making them a crucial component of innate immunity. This study aimed to characterize the neutrophil proteome of Felis catus. Granulocytes were isolated from cat blood and purified, and 1 × 107 cells were used to identify proteins. In total, 102 neutrophil proteins from cats were identified and categorized on the basis of their abundance. Proteoglycan-3, which is involved in various biological processes, including neutrophil activation and the immune response, was the most abundant protein. Among the metabolic pathways, glycolysis involved the largest group of identified proteins (nine proteins). Proteins involved in molecular functions, cellular components, and biological processes were also identified. The identification of proteins in this study is expected to aid future research by elucidating certain characteristics of the species, identifying potential markers or drugs, and facilitating rapid, non-invasive diagnosis of diseases that particularly affect felines.

Downloads

Download data is not yet available.

Author Biographies

Gabriela Mota Sena de Oliveira, Universidade Estadual de Santa Cruz

Doctor's Student at Postgraduate Program in Animal Science, Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, Brazil.

Irma Yuliana Mora Ocampo, Universidade Estadual de Santa Cruz

Profa. Dra., Agricultural Engineer, Productivity Researcher PDJ/CNPq, UESC, Ilhéus, BA, Brazil.

Carlos Priminho Pirovani, Universidade Estadual de Santa Cruz

Prof. Dr., Department of Biological Sciences Brazil, UESC, Ilhéus, BA, Brazil. 

José Luís Menezes Varjão, Universidade Estadual de Santa Cruz

Doctor's Student at Postgraduate Program in Animal Science, Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, Brazil.

Alexandre Dias Munhoz, Universidade Estadual de Santa Cruz

Prof. Dr., Department of Agricultural and Environmental Sciences, UESC, Ilhéus, BA, Brazil.

References

Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D., & Zychlinsky, A. (2012). Neutrophil function: from mechanisms to disease. Annual Review of Immunology, 30, 459-489. doi: 10.1146/annurev-immunol-020711-074942

Babior, B. M. (1999). NADPH oxidase : an update. The American Society of Hematology, 93(5), 1464-1476. doi: 10.1182/blood. V93.5.1464

Baggiolini, M., Loetscher, P., & Moser, B. (1995). Interleukin-8 and the chemokine family. Journal International Immunopharmacoloy, 17(2), 103-108. doi: 10.1016/0192-0561(94)00088-6

Bainton, D. F. (1999). Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron microscopy. Journal of Immunological Methods, 232(1-2), 153-168. doi: 10.1016/S0022-1759(99)00173-8

Borregaard, N. (2010). Neutrophils, from marrow to microbes. Immunity, 33(5), 657-670. doi: 10.1016/j.immuni.2010.11.011

Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503-3521. doi: 10.1182/blood.v89.10.3503

Borregaard, N., & Herlin, T. (1982). Energy metabolism of human neutrophils during phagocytosis. Journal Clinical Investigation, 70(3), 550-557. doi: 10.1172/jci110647

Borregaard, N., Sørensen, O. E., & Theilgaard-Mönch, K. (2007). Neutrophil granules: a library of innate immunity proteins. Trends in Immunology, 28(8), 340-345. doi: 10.1016/j.it.2007.06.002

Botelho, R. J., Tapper, H., Furuya, W., Mojdami, D., & Grinstein, S. (2002). R-Mediated phagocytosis stimulates localized pinocytosis in human neutrophils 1. Journal of Immunology, 169(8), 4423-4429. doi: 10.4049/jimmunol.169.8.4423

Brinkmann, V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D., Weinrauch Y., & Zychlinsky A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532-1535. doi: 10.1126/science.1092385

Certo, M., Tsai, C., Pucino, V., Ho, P., & Mauro, C. (2021). Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nature Reviews Immunology, 21(3), 151-161. doi: 10.1038/s41577-020-0406-2

Chen, T., Li, Y., Sun, R., Hu, H., & Liu, Y. (2021). Receptor-mediated NETosis on neutrophils. Frontiers in Immunology, 12, 775267. doi: 10.3389/fimmu.2021.775267

Cieutat, A.-M., Lobel, P., August, J. T., Kjeldsen, L., Sengeløv, H., Borregaard, N., & Bainton, D. F. (1998). Azurophilic granules of human neutrophilic leukocytes are deficient in lysosome-associated membrane proteins but retain the mannose 6-phosphate recognition marker. Blood, 91(3), 1044-1058. doi: 10.1182/blood. v91.3.1044

Collado, V. M., Domenech, A., Miró, G., Martin, S., Escolar, E., & Gomez-Lucia, E. (2012). Epidemiological aspects and clinicopathological findings in cats naturally infected with Feline Leukemia Virus (FeLV) and/or Feline Immunodeficiency Virus (FIV). Open Journal of Veterinary Medicine, 2(1), 13-20. doi: 10.4236/ojvm.2012.21003

Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463(7280), 485-492. doi: 10.1038/nature08908.Cell

Folco, E. J., Mawson, T. L., Vromman, A., Bernardes-Souza, B., Franck, G., Persson, O., Nakamura, M., Newton, G., & Luscinskas, F. W. (2018). Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arteriosclerosis Thrombosis and Vascular Biology, 38(8), 1901-1912. doi: 10.1161/ATVBAHA.118.311150

Gonzalez-Aparicio, M., & Alfaro, C. (2019). Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment : is there a pathogenic role ? Journal of Immunology Research, 2019, 6252138. doi: 10.1155/2019/6252138

Gordon, S. (2016). Phagocytosis: an imunobiologic process. Immunity, 44(3), 463-475. doi: 10.1016/j.immuni.2016.02.026

Goyette, J., & Geczy, C. L. (2011). Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids, 41(4), 821-842. doi: 10.1007/s00726-010-0528-0

Grogan, A., Reeves, E., Keep, N., Wientjes, F., Totty, N. F., Burlingame, A. L., Hsuan, J. J., & Segal, A. W. (1997). Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. Journal of Cell Science, 110(24), 3071-3081. doi: 10.1242/jcs.110.24.3071

Haeggström, J. Z. (2018). Leukotriene biosynthetic enzymes as therapeutic targets. The Journal of Clinical Investigation, 128(7), 2680-2690. doi: 10.1172/JCI97945

Haeggström, J. Z., & Funk, C. D. (2011). Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chemical Reviews, 111(10), 5866-5898. doi: 10.1021/cr200246d

Hong, W., Yang, J., Zou, J., Bi, Z., He, C., Lei, H., He, X., Li, X., Alu, A., Ren, W., Wang, Z., Jiang, X., Zhong, K., Jia, G., Yang, Y., Yu, W., Huang, Q., Yang, M., Zhou, Y., … Lu, S. (2022). Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells. Cellular & Molecular Immunology, 19(5), 577-587. doi: 10.1038/s41423-022-00845-6

Jann, N. J., Schmaler, M., Kristian, S. A., Radek, K. A., Gallo, R. L., Nizet, V., Peschel, A., & Landmann, R. (2009). Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. Journal LeuKocyte Biology, 86(5), 1159-1169. doi: 10.1189/jlb.0209053

Jethwaney, D., Islam, M. R., Bernabe, D. B. V., Campbell, K. P., Nauseef, W. M., & Gibson, B. W. (2007). Proteomics analysis of plasma membrane and secretory vesicles from human neutrophils. Proteome Science, 5(12), 1-15. doi: 10.1186/1477-5956-5-12

Ley, K., Hoffman, H. M., Kubes, P., Cassatella, M. A., Zychlinsky, A., Hedrick, C. C., & Catz, S. D. (2018). Neutrophils: new insights and open questions. Science Imunology, 3(30), eaat4579. doi: 10.1126/ sciimmunol.aat4579

Lippolis, J. D., & Reinhardt, T. A. (2005). Proteomic survey of bovine neutrophils. Veterinary Immunology and Immunopathology, 103(1-2), 53-65. doi: 10.1016/j.vetimm.2004.08.019

McLeish, K. R., Merchant, M. L., Klein, J. B., & Ward, R. A. (2013). Technical note: proteomic approaches to fundamental questions about neutrophil biology. Journal of Leukocyte Biology, 94(4), 683-692. doi: 10.1189/jlb.1112591

Mirsaeidi, M., Gidfar, S., Vu, A., & Schraufnagel, D. (2016). Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. Journal of Translational Medicine, 13(1), 1-9. doi: 10.1186/s12967-016-0843-7

Moser, B., & Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Chemokine Reviews, 2(2), 123-128. doi: 10.1038/84219

Peters-Golden, M., & Henderson, W. R. (2007). Leukotrienes. The New England Journal Medicine, 357(18), 1841-1854. doi: 10.1056/NEJMra071371

Pick, R., Begandt, D., Stocker, T. J., Salvermoser, M., Thome, S., Ralph, T. B., Montanez, E., Harrison, U., Forn, I., Khandoga, A. G., Coletti, R., Weckbach, L. T., Brechtefeld, D., Haas, R., Imhof, A., Massberg, S., Sperandio, M., & Walzog, B. (2017). Coronin 1A, a novel player in integrin biology, controls neutrophil traf fi cking in innate immunity. Blood, 130(7), 847-858. doi: 10.1182/blood-2016-11-749622

Piubelli, C., Cecconi, D., Astner, H., Caldara, F., Tessari, M., Carboni, L., Hamdan, M., Righetti, P. G., & Domenici, E. (2005). Proteomic changes in rat serum, polymorphonuclear and mononuclear leukocytes after chronic nicotine administration. Proteomics, 5(5), 1382-1394. doi: 10.1002/pmic.200401008

Piubelli, C., Galvani, M., Hamdan, M., Domenici, E., & Righetti, P. G. (2002). Proteome analysis of rat polymorphonuclear leukocytes: a two-dimensional electrophoresis / mass spectrometry approach. Electrophoresis, 23(2), 298-310. doi: 10.1002/1522-2683(200202)23:2<298::AID-ELPS298>3.0.CO;2-I.

Postlethwait, J. H., Woods, I. G., Ngo-Hazelett, P., Yan, Y., Kelly, P. D., Chu, F., Huang, H., Hill-Force, A., & Talbot, W. S. (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Research, 10(12), 1890-1902. doi: 10.1101/gr.164800.1

Quinn, M. T., & Gauss, K. A. (2004). Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. Journal of Leukocyte Biology, 76(4), 760-781. doi: 10.1189/jlb.0404216

Robinson, J. M., Karnovsky, M. L., & Karnovsky, M. I. (1982). Glycogen accumulation in polymorphonuclear leukocytes, inflammation. The Journal of Cell Biology, 95(3), 933-942. doi: 10.1083/jcb.95.3.933

Rodrigues, D. A. S., Prestes, E. B., Gama, A. M. S., Silva, L. S., Pinheiro, A. A. S., Ribeiro, J. M. C., Campos, R. M. P., Pimentel-Coelho, P. M., Souza, H. S., Dicko, A., Duffy, P. E., Fried, M., Francischetti, I. M. B., Saraiva, E. M., Paula, H. A., Neto, & Bozza, M. T. (2020). CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium -infected erythrocytes. PLoS Pathogens, 16(8), 1-23. doi: 10.1371/journal.ppat.1008230

Roos, D., & Boer, M. de. (2013). Molecular diagnosis of chronic granulomatous disease. Clinical and Experimental Imumnulogy, 175(2), 139-149. doi: 10.1111/cei.12202

Sadiku, P., Willson, J. A., Ryan, E. M., Carmeliet, P., Whyte, M. K. B., & Walmsley, S. R. (2021). Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metabolism, 33(2), 411-423. doi: 10.1016/j.cmet.2020.11.016

Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., & Prohaska, R. (2002). Ca ϩϩ -dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin ( annexin VII ), and sorcin. Blood, 99(7), 2569-2577. doi: 10.1182/blood. V99.7.2569

ShinyGO 0.77 (2023). Gene Ontology Enrichment Analysis. South Dakota State University. http://bioinformatics.sdstate.edu/go/

Smith, P. D., Daviest, A., Crumptont, M. J., & Moss, S. E. (1994). Structure of the human annexin VI gene. The Proceedings of the National Academy of Sciences, 91(7), 2713-2717. doi: 10.1073/pnas.91.7.2713

Sprenkeler, E. G. G., Tool, A. T. J., Henriet, S. S. V., Bruggen, R. Van, & Kuijpers, T. W. (2022a). Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood, 139(21), 3166-3180. doi: 10.1182/blood.2021013565

Sprenkeler, E. G. G., Zandstra, J., Kleef, N. D. Van, Goetschalckx, I., Verstegen, B., Aarts, C. E. M., Janssen, H., Tool, A. T. J., Mierlo, G. Van, Bruggen, R. Van, Jongerius, I., & Kuijpers, T. W. (2022b). S100A8/A9 Is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cells, 11(2), 1-14. doi: 10.3390/cells11020236

Stillie, R., Farooq, S. M., & Gordon, J. R. (2009). The functional significance behind expressing two IL-8 receptor types on PMN. Journal of Leukocyte Biology, 86(3), 529-543. doi: 10.1189/jlb.0208125

Tomazella, G. G., Silva, I. da, Laure, H. J., Rosa, J. C., Chammas, R., Wiker, H. G., Souza, G. A. de, & Greene, L. J. (2009). Proteomic analysis of total cellular proteins of human neutrophils. Proteome Science, 7(32), 1-9. doi: 10.1186/1477-5956-7-32

Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., & Halbwachs-Mecarelli, L. (2000). Neutrophils: molecules, functions and pathophysiological aspects. Laboratory Investigation, 80(5), 617-653. doi: 10.1038/labinvest.3780067

Villén, J., & Gygi, S. P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Procotol, 3(10), 1630-1638. doi: 10.1038/nprot.2008.150

Uriarte, S. M., Powell, D. W., Luerman, G. C., Merchant, M. L., Cummins, T. D., Jog, N. R., Ward, R. A., & McLeish, K. R. (2008). Comparison of proteins expressed on secretory vesicle membranes and plasma membranes of human neutrophils. The Journal of Immunology, 180(8), 5575-5581. doi: 10.4049/ jimmunol.180.8.5575

Universal Protein Knowledgebase (2023). Protein: Uniprot Knowledgebase. http://www.uniprot.org

Downloads

Published

2024-11-26

How to Cite

Oliveira, G. M. S. de, Ocampo, I. Y. M., Pirovani, C. P., Varjão, J. L. M., & Munhoz, A. D. (2024). Protein analysis of polymorphonuclear leukocytes from domestic cats. Semina: Ciências Agrárias, 45(6), 1873–1890. https://doi.org/10.5433/1679-0359.2024v45n6p1873

Issue

Section

Articles