Hydrogen peroxide application methods in guava seedlings grown under salt stress

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n4p1191

Keywords:

Antioxidant enzymes, Elicitors, Psidium guajava L, Saline water.

Abstract

The guava plant is of great socioeconomic importance in Northeastern Brazil. However, in this region, irrigation water often contains high salt concentrations that compromise plant growth. Therefore, strategies to mitigate the deleterious effects of salt stress on plants are necessary, such as the exogenous application of hydrogen peroxide. Nonetheless, studies on its application are still scarce. This study aimed to evaluate different methods of hydrogen peroxide application in guava plants irrigated with saline water during the seedling formation phase. The experiment was conducted under greenhouse conditions at the CCTA/UFCG in Pombal - PB, Brazil. It followed a randomized complete block design in a 5 × 4 factorial arrangement consisting of five levels of irrigation water electrical conductivity (ECw) (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1) and four hydrogen peroxide (H2O2) application methods (M1 – no peroxide application, M2 – seed soaking, M3 – foliar spray, and M4 – seed soaking + foliar spray), all at a concentration of 20 μM, with three replicates and two plants per plot. Water salinity above 0.3 dS m-1 inhibited growth, total chlorophyll content, and dry matter accumulation in guava cv. Paluma seedlings. Foliar spray application of H2O2 mitigated the effects of salt stress on the number of leaves, leaf area, and dry matter in guava plants. H2O2 at a concentration of 20 μM reduced electrolyte leakage regardless of the application method. Guava seedlings irrigated with water up to 3.5 dS m-1 showed acceptable quality for field transplantation.

Downloads

Download data is not yet available.

Author Biographies

Valéria Fernandes de Oliveira Sousa, Universidade Federal de Campina Grande

Postdoctoral Fellow, Post Graduate Program in Tropical Horticulture, Universidade Federal de Campina Grande, UFCG, Pombal, PB, Brazil.

Lauriane Almeida dos Anjos Soares, Universidade Federal de Campina Grande

Profa. Dra., Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

Anderson de Araújo Mendes, Universidade Federal de Campina Grande

Agronomist, Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

Geovani Soares de Lima, Universidade Federal de Campina Grande

Prof. Dr., Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

Reynaldo Teodoro de Fátima , Universidade Federal de Campina Grande

Postdoctoral Fellow, Post Graduate Program in Tropical Horticulture, Universidade Federal de Campina Grande, UFCG, Pombal, PB, Brazil.

Maria Amanda Guedes, Universidade Federal de Campina Grande

Doctoral Student of the Postgraduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Hans Raj Gheyi, Universidade Federal de Campina Grande

Doctoral Student of the Postgraduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Reginaldo Gomes Nobre, Universidade Federal Rural do Semi-árido

Prof. Dr., Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-árido, UFERSA, Mossoró, RN, Brazil.

Kilson Pinheiro Lopes, Universidade Federal de Campina Grande

Prof. Dr., Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

Iara Almeida Roque, Universidade Federal de Campina Grande

Doctoral Student of the Postgraduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/0507

Angulo-López, J. E., Flores-Gallegos, A. C., Torres-León, C., Ramírez-Guzmán, K. N., Martínez, G. A., & Aguilar, C. N. (2021). Guava (Psidium guajava L.) fruit and valorization of industrialization by-products. Processes, 9(6), e1075. doi: 10.3390/pr9061075

Chattha, M. U., Hassan, M. U. U., Khan, I., Nawaz, M., Shah, A. N., Sattar, A., Hashem, M., Alamri, S., Aslam, M. T., Alhaithloul, H. A. S., Hassan, M. U., & Qari, S. H. (2022). Hydrogen peroxide priming alleviates salinity induced toxic effect in maize by improving antioxidant defense system, ionic homeostasis, photosynthetic efficiency and hormonal crosstalk. Molecular Biology Reports, 49(6), 5611-5624. doi: 10.1007/s11033-022-07535-6

Costa, A. F. S., & Lima, I. M. (2008). Cultura da goiaba. Anais do Congresso Brasileiro de Fruticultura, Vitoria, ES, Brasil, 20.

Dickson, A.; Leaf, A. L. & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1), 10-13. doi: 10.5558/tfc36010-1

Farouk, S., & Amira, M. S. A. Q. (2018). Enhancing seed quality and productivity as well as physio-anatomical responses of pea plants by folic acid and/or hydrogen peroxide application. Scientia Horticulturae, 240(1), 29-37. doi: 10.1016/j.scienta.2018.05.049

Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450

Ferreira, J. T. A., Lima, G. S. de, Silva, S. S. da, Soares, L. A. dos A., Fátima, R. T., Nóbrega, J. S., Gheyi, H. R., Almeida, F. A., & Mendonça, A. J. T. (2023). Hydrogen peroxide in the induction of tolerance of guava seedlings to salt stress. Semina: Ciências Agrárias, 44(2), 739-754. doi: 10.5433/1679-0359.2023v44n2p739

Ferreira, M. E., Lima, G. S., Soares, L. A. dos A., Silva, I. J., Gomes, V. R., Gheyi, H. R., Dantas, M. V., & Silva, S. S. da. (2025). Morphophysiological responses of sour passion fruit seedlings to water salinity and hydrogen peroxide. Revista Caatinga, 38(1), e12582. doi: 10.1590/1983-21252025v3812582rc

Gallegos-Cedillo, V. M., Diánez, F., Nájera, C., & Santos, M. (2021). Plant agronomic features can predict quality and field performance: a bibliometric analysis. Agronomy, 11(1), e2305. doi: 10.3390/agronomy11112305

Giordano, M., Petropoulos, S. A., & Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(5), e463. doi: 10.3390/agriculture11050463

Hajihashemi, S., Skalicky, M., Brestic, M., & Pavla, V. (2021). Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus. Plant Physiology and Biochemistry, 169(1), 160-170. doi: 10.1016/j.plaphy.2021.11.013

Instituto Brasileiro de Geografia e Estatística (2025). Pesquisa anual da produção agrícola municipal. IBGE. https://sidra.ibge.gov.br/tabela/1612

Lima, G. S. de, Gheyi, H. R., Nobre, R. G., Soares, L. A. A., Xavier, G. A., & Santos, J. A., Jr. (2015). Water relations and gas exchange in castor bean irrigated with saline water of distinct cationic nature. African Journal of Agricultural Research, 10(13), 1581-1594. doi: 10.5897/AJAR2015.9606

Lima, G. S. de, Pinheiro, F. W. A., Souza, W. B. B., Soares, L. A. dos A., Gheyi, H. R., Nobre, R. G., Queiroga, R. C. F., & Fernandes, P. D. (2023). Physiological indices of sour passion fruit under brackish water irrigation strategies and potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(5), 383-392. doi: 10.1590/1807-1929/agriambi.v27n5p383-392

Lima, L. G. S., Andrade, A. C., Silva, R. T. L., Fronza, D., & Nishijima, T. (2012). Modelos matemáticos para estimativa de área foliar de goiabeira (Psidium guajava L.). Anais da Reunião Anual da Sociedade Brasileira para o Progresso da Ciência, São Luiz, UF, Brasil.

Liu, L., Huang, L., Lin, X., & Sun, C. (2020). Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings. Plant Cell Reports, 39(1), 567-575. doi: 10.1007/s00299-020-02513-3

Nobre, R. G., Rodrigues, R. A., Fº., Lima, G. S., Linhares, E. L. R., Soares, L. A. A., Silva, L. A., Teixeira, A. D. S., & Macumbi, N. J. V. (2023). Gas exchange and photochemical efficiency of guava under saline water irrigation and nitrogen-potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(5), 429-437. doi: 10.1590/1807-1929/agriambi.v27n5p429-437

Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira, Métodos de pesquisa em fertilidade do solo (pp. 189-253). Brasília.

Pan, Y., Deng, Z., Chen, X., Zhang, B., Fan, Y., & Li, H. (2021). Synergistic antioxidant effects of phenolic acids and carotenes on H2O2-induced H9c2 cells: role of cell membrane transporters. Food Chemistry, 341(1), e128000. doi: 10.1016/j.foodchem.2020.128000

Ramos, J. G., Lima, V. L. A., Lima, G. S., Nunes, K. G., Pereira, M. O., & Paiva, F. J. S. (2022). Produção e qualidade pós-colheita do maracujazeiro-azedo irrigado com águas salinas e aplicação exógena de H2O2. Irriga, 27(3), 540-556. doi: 10.15809/irriga.2022v27n3p540-556

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. U.S. Department of Agriculture.

Rodrigues, R. A., Fº., Nobre, R. G., Lima, G. S., Moraes, F. M., Soares, L. A. A., Teixeira, A. D. S., Peixoto, T. D. C., & Vasconcelos, E. S. (2023). Production of guava seedlings with increasing water salinity and nitrogen e potassium fertilizations. Revista Caatinga, 36(4), 929-939. doi: 10.1590/1983-21252023v36n420rc

Scotti-Campos, P.; Pham-Thi, Anh-Thu; Semedo, J. N.; Pais, I. P.; Ramalho, J. C. & Matos, M. C. (2013). Physiological responses and membrane integrity in three Vigna genotypes with contrasting drought tolerance. Emirates Journal of Food and Agriculture, 25(12), 1002-1013.

Shamili, M., Esfandiari, G. R., & Samari, F. (2021). The impact of foliar salicylic acid in salt-exposed guava (Psidium guajava L.) seedlings. International Journal of Fruit Science, 21(1), 323-333. doi: 10.1080/15538362.2021.1887050

Silva, A. A. R. da, Capitulino, J. D., Lima, G. S. de, Azevedo, C. A. V., & Veloso, L. L. S. A. (2021b). Tolerance to salt stress in soursop seedlings under different methods of H2O2 application. Revista Ciência Agronômica, 52(3), e20207107. doi: 10.5935/1806-6690.20210030

Silva, A. A. R. da, Lima, G. S. de, Veloso, L. L. de S. A., Azevedo, C. A. V. de, Gheyi, H. R., Fernandes, P. D., & Silva, L. de A. (2019). Hydrogen peroxide on acclimation of soursop seedlings under irrigation water salinity. Semina: Ciências Agrárias, 40(4), 1441-1454. doi: 10.5433/1679-0359.2019v40n4p1441

Silva, A. A. R. da, Veloso, L. L. S. A., Lima, G. S., Azevedo, C. A. V., Gheyi, H. R., & Fernades, P. D. (2021a). Hydrogen peroxide in the acclimation of yellow passion fruit seedlings to salt stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(2), 116-123. doi: 10.1590/1807-1929/agriambi.v25n2p116-123

Silva, P. C. C., Gheyi, H. R., Jesus, M. J. D. S. de, Correia, M. R., & Azevedo, A. D. de, Neto. (2023). Seed priming with hydrogen peroxide enhances tolerance to salt stress of hydroponic lettuce. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(9), 704-711. doi: 10.1590/1807-1929/agriambi.v27n9p704-711

Silva, S. S. da, Lima, G. S. de, Ferreira, J. T. A., Soares, L. A. dos A., Gheyi, H. R., Nobre, R. G, Silva, F. J. L., & Mesquita, E. F. (2024). Formation of guava seedlings under salt stress and foliar application of hydrogen peroxide. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(2), e276236. doi: 10.1590/1807-1929/agriambi.v28n2e276236

Souza, L. P., Nobre, R. G., Fatima, R. T., Pimenta, T. A., Diniz, G. L., & Barbosa, J. L. (2019). Morfofisiologia e qualidade de porta-enxerto de cajueiro sob peróxido de hidrogênio e estresse salino. Revista Brasileira de Agricultura Irrigada, 13(3), 3477-3486. doi: 10.7127/rbai.v13n301082

Teixeira, P. C., Donalgema, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solos (3a ed.). EMBRAPA.

Veloso, L. de S. A., Azevedo, C. A. V. de, Nobre, R. G., Lima, G. S. de, Capitulino, J. D., & Silva, F. de A. da. (2023). H2O2 alleviates salt stress effects on photochemical efficiency and photosynthetic pigments of cotton genotypes. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(1), 34-41. doi: 10.1590/1807-1929/agriambi.v27n1p34-41

Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasana, P., & Kishor, P. B. K. (2020). Engineering salinity tolerance in plants: progress and prospects. Plants, 251(4), e76. doi: 10.1007/s00425-020-03366-6

Xavier, A. V. O., Lima, G. S. de, Gheyi, H. R., Silva, A. A. R. da, Soares, L. A. dos A., & Lacerda, C. N. de. (2022). Gas exchange, growth and quality of guava seedlings under salt stress and salicylic acid. Revista Ambiente & Água, 17(3), e2816. doi: 10.4136/ambi-agua.2816

Downloads

Published

2025-08-21

How to Cite

Sousa, V. F. de O., Soares, L. A. dos A., Mendes, A. de A., Lima, G. S. de, Fátima , R. T. de, Guedes, M. A., … Roque, I. A. (2025). Hydrogen peroxide application methods in guava seedlings grown under salt stress. Semina: Ciências Agrárias, 46(4), 1191–1208. https://doi.org/10.5433/1679-0359.2025v46n4p1191

Issue

Section

Articles