LED light supplementation in the cultivation of two petunia varieties: physiological and productive aspects

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n6p1767

Keywords:

Petunia × hybrida, Light, Pigments, Photosynthesis, Growth.

Abstract

The objective of this study was to investigate the effects of supplemental lighting (SL) on two varieties of Petunia × hybrida (Miliflora – FlashForward White and Pendula – Plush Red) grown under natural light conditions. Light-emitting diodes (LEDs) were used with two blue (B) and red (R) light combinations 15%B + 85%R and 85%B + 15%R as well as white light (W), all at an approximate intensity of 25 µmol m⁻2 s⁻1. The experiment was conducted in a greenhouse, with daily supplemental lighting following the natural photoperiod of the Pelotas-RS region, Brazil, from sowing to full flowering. Evaluations included photosynthetic pigment indices, gas exchange, and biometric analyses. The two blue and red light combinations did not result in significant differences in pigment indices or net photosynthetic rate compared to natural light. However, the 85%B + 15%R and 100%W treatments promoted greater stem dry weight in the White variety and higher flower and floral bud dry weight in the Red variety. Additionally, white light (100%W) increased the number of open flowers per plant in the White variety. Nevertheless, all three supplemental light treatments performed similarly to natural light in terms of total plant growth (shoot and root biomass).

Downloads

Download data is not yet available.

Author Biographies

Viviane Mülech Ritter, Universidade Federal de Pelotas

Dra. in Agronomy, Postgraduate Program in Family Agricultural Production Systems, Universidade Federal de Pelotas, UFPEL, Pelotas, RS, Brazil.

Roberta Marins Nogueira Peil, Universidade Federal de Pelotas

Prof. Dr., Department of Crop Production, UFPEL, Pelotas, RS, Brazil.

Sidnei Deuner, Universidade Federal de Pelotas

Prof. Dr., Department of Botany, UFPEL, Pelotas, RS, Brazil.

Paulo Roberto Grolli, Universidade Federal de Pelotas

Prof. Dr., Department of Crop Production, UFPEL, Pelotas, RS, Brazil.

References

Akbarian, B., Matloobi, M., & Mahna, N. (2016). Effects of LED light on seed emergence and seedling quality of four bedding flowers. Journal of Ornamental Plants, 6(2), 115-123. https://www.researchgate.net/publication/305440830

Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. doi: 10.1146/annurev.arplant.59.032607.092759

Battle, M. W., Vegliani, F., & Jones, M. (2020). A shades of green: untying the knots of green photoperception. Journal of Experimental Botany, 71(19), 5764-5770. doi: 10.1093/jxb/eraa312

Beckmann, M. Z., Duarte, C. R. B., Paula, V. A. de, Mendez, M. E. G., & Peil, R. M. N. (2006). Radiação solar em ambiente protegido cultivado com tomateiro nas estações verão-outono do Rio Grande do Sul. Ciência Rural, 36(1), 86-92. doi: 10.1590/S0103-84782006000100013

Chen, Y., Bian, Z., Marcelis, L. F. M., Heuvelink, E., Yang, Q., & Kaiser, E. (2024). Green light is similarly effective in promoting plant biomass as red/blue light: a meta-analysis. Journal Experimental Botany, 75(18), 5655-5666. doi: 10.1093/jxb/erae259

Craver, J. K., Boldt, J. K., & Lopez, R. G. (2019). Comparison of supplemental lighting provided by high-pressure sodium lamps or light-emitting diodes for the propagation and finishing of bedding plants in a commercial greenhouse. Hortscience, 54(1), 52-59. doi: 10.21273/HORTSCI13471-18

Frąszczak, B., Kula-Maximenko, M., Podsędek, A., Sosnowska, D., Unegbu, K. C., & Spiżewski, T. (2023). Morphological and photosynthetic parameters of green and red kale microgreens cultivated under different light spectra. Plants, 12(22), 3800. doi: 10.3390/plants12223800

García-Caparrós, P., Martínez-Ramírez, G., Almansa, E. M., Javier Barbero, F., Chica, R. M., & Teresa Lao, M. (2020). Crescimento, fotossíntese e respostas fisiológicas de plantas ornamentais à complementação com LEDs vermelho-azuis monocromáticos ou mistos para uso em ambientes internos. Agronomy, 10(2), 284. doi: 10.3390/agronomy10020284

Gautam, P. (2020). Effect of light quality in the regulation of morphology and flowering of petunia (Petunia hybrida). Thesis, Norwegian University of Life Sciences, Ås, Norway. https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/189466

Gautam, P., Terfa, M. T., Olsen, J. E., & Torre, S. (2015). Red and blue light effects on morphology and flowering of Petunia × hybrida. Scientia Horticulturae, 184(5), 171-178. doi: 10.1016/j.scienta.2015.01.004

Hiscox, J. D., & Israelstam, G. F. A. (1979). Method for extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. doi: 10.1139/b79-163

Huché-Thélier, L., Crespel, L., Le Gourrierec, J., Morel, P., Sakr, S., & Leduc, N. (2016). Light signaling and plant responses to blue and UV radiations-perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22-38. doi: 10.1016/j.envexpbot.2015.06.009

Instituto Nacional de Meteorologia (2022). Normas climatológicas (1991/2020). INMET. https://portal.inmet.gov.br/normais#

Kobori, M. M. R. G., Mello, S. da C., Freitas, I. de, & Silveira, F. F. (2022). Supplemental light with different blue and red ratios in the physiology, yield and quality of Impatiens. Scientia Horticulturae, 306(11), 111424. doi: 10.1016/j.scienta.2022.111424

Kong, Y., & Zheng, Y. (2024). Magic blue light: a versatile mediator of plant elongation. Plants, 13(1), 115. doi: 10.3390/plants13010115

Kong, Y., Schiestel, K., & Zheng, Y. (2018a). Blue light associated with low phytochrome activity can promote flowering: a comparison with red light in four bedding plant species. Acta Horticulturae, 296, 433-440. doi: 10.17660/ActaHortic.2020.1296.56

Kong, Y., Stasiak, M., Dixon, M., & Zheng, Y. (2018b). Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: a comparison with red light in four bedding plant species. Environmental and Experimental Botany, 155, 345-359. doi: 10.1016/j.envexpbot.2018.07.021

Lazzarini, L. E. S., Pacheco, F. V., Silva, S. T., Coelho, A. D., Medeiros, A. P. R., Bertolucci, S. K. V., Pinto, J. E. B. P., & Soares, J. D. R. (2017). Uso de diodos emissores de luz (led) na fisiologia de plantas cultivadas - revisão. Scientia Agraria Paranaensis, 16(2), 137-144. doi: 10.18188/1983-1471/sap.v16n1p137-144

Matysiak, B. (2021). The effect of supplementary LED lighting on the morphological and physiological traits of Miniature Rosa × hybrid ‘Aga’ and the development of Powdery Mildew (Podosphaera pannosa) under greenhouse conditions. Plants, 10(2), 1-13. doi: 10.3390/plants10020417

Meng, Q., & Runkle, E. (2019). How green light affects floriculture crops. Greenhouse Grower. https://www.greenhousegrower.com/production/how-green-light-affects-floriculture-crops/

Miao, Y.-X., Wang, X.-Z., Gao, L.-H., Chen, Q.-Y., & Qu, M. (2016). Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture, 15(1), 87-100. doi: 10.1016/S2095-3119(15)61202-3

Naznin, M. T., Lefsrud, M., Gravel, V., & Azad, M. O. K. (2019). Blue light added with red leds enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4), 93. doi: 10.3390/plants8040093

Oh, W., Runkle, E. S., & Warner, R. M. (2010). Timing and duration of supplemental lighting during the seedling stage influence quality and flowering in petunia and pansy. Hortscience, 45(9), 1332-1337. doi: 10.21273/HORTSCI.45.9.1332

Owen, W. G., & Lopez, R. G. (2019). Comparison of sole-source and supplemental lighting on callus formation and initial rhizogenesis of gaura and salvia cuttings. HortScience Horts, 54(4), 684-691. doi: 10.21273/HORTSCI13481-18

Park, Y., & Runkle, E. S. (2018). Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: white versus blue plus red radiation. Plos One, 13(8), 1-14. doi: 10.1371/journal.pone.0202386

Phansurin, W., Jamaree, T., & Sakhonwasee, S. (2017). Comparison of growth, development, and photosynthesis of petunia grown under white or red-blue LED lights. Horticultural Science and Technology, 35(6), 689-699. doi: 10.12972/kjhst.20170073

Randall, W. C., & Lopez, R. G. (2014). Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience, 49(5), 589-595. doi: 10.21273/HORTSCI.49.5.589

Randall, W. C., & Lopez, R. G. (2015). Comparison of bedding plant seedlings grown under sole-source light-emitting diodes (LEDs) and greenhouse supplemental lighting from LEDs and high-pressure sodium lamps. HortScience, 50(5), 705-713. doi: 10.21273/HORTSCI.50.5.705

Runkle, E. (2016). Red light and plant growth. Technically speaking. Gpnmag.com. https://www.canr.msu.edu/uploads/resources/pdfs/red-light.pdf

Silvestri, C., Caceres, M. E., Ceccarelli, M., Pica, A. L., Rugini, E., & Cristofori, V. (2019). Influence of continuous spectrum light on morphological traits and leaf anatomy of hazelnut plantlets. Frontiers in Plant Science, 10(23), 1318. doi: 10.3389/fpls.2019.01318

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6nd ed.). Artimed. https://antigo.uab.ufsc.br/biologia/files/2020/08/Fisiologia-Vegetal.pdf

Terashima, I., Fujita, T., Inoue, T., Chow, W. S., & Oguchi, R. (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology, 50(4), 684-697. doi: 10.1093/pcp/pcp034

Trivelinni, A., Toscano, S., Romano, D., & Ferrante, A. (2023). LED lighting to produce high-quality ornamental plants. Plants, 12(8), 1667. doi: 10.3390/plants12081667

Wang, X. Y., Xu, X. M., & Cui, J. (2015). The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 53, 213-222. doi: 10.1007/s11099-015-0083-8

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. doi: 10.1016/S0176-1617(11)81192-2

Wollaeger, H. M., & Runkle, E. S. (2013). Growth responses of ornamental annual seedlings under different wavelengths of red light provided by light-emitting diodes. HortScience, 48(12), 1478-1483. doi: 10.21273/HORTSCI.48.12.1478

Xu, Y. (2019). Nature and source of light for plant factory. In M. Anpo, H. Fukuda, & T. Wada, Plant factory using artificial light: adapting to environmental disruption and clues to agricultural innovation (pp. 47-69). Amsterdam: Elsevier. https://shop.elsevier.com/books/plant-factory-using-artificial-light/anpo/978-0-12-813973-8

Zheng, L., & Labeke, M.-C. V. (2017). Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science, 8, 917. doi: 10.3389/fpls.2017.00917

Downloads

Published

2025-11-28

How to Cite

Ritter, V. M., Peil, R. M. N., Deuner, S., & Grolli, P. R. (2025). LED light supplementation in the cultivation of two petunia varieties: physiological and productive aspects. Semina: Ciências Agrárias, 46(6), 1767–1784. https://doi.org/10.5433/1679-0359.2025v46n6p1767

Issue

Section

Articles