Estimation of the genetic parameters for feed efficiency and carcass traits in Nellore bulls using a genomic matrix

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n5p1439

Keywords:

Correlation, Heritability, Zebu cattle.

Abstract

The selection of animals that are more efficient in feed utilization without compromising carcass quality is important for breeding programs, and genomic and pedigree information can be used to enhance the estimates of genetic values. In this context, this project aims to evaluate the genetic traits of residual feed intake (RFI), dry matter intake (DMI), ribeye area (REA), rib subcutaneous fat thickness (RFT), and rump subcutaneous fat thickness (RFT8) in Nellore bulls participating in the Nelore Qualitas® breeding program, utilizing a genomic matrix.  The RFI and DMI data used in this study were collected during feed efficiency tests conducted between 2010 and 2023, involving 1,618 bulls with an average age of 643 ± 41 days, housed in individual and group pens. Technicians from commercial companies performed ultrasound scans to measure REA, RFT, and RFT8. Univariate and bivariate animal models, based on a Bayesian approach, were applied to estimate genetic parameters for the traits, using a single-step genomic best linear unbiased prediction (GBLUP). Systematic effects of contemporary groups (pen and year), the linear covariate of age at the beginning of the test, and additive and residual effects were considered. Heritability estimates ranged from moderate to high, with values of 0.27 ± 0.05 (RFI), 0.30 ± 0.05 (DMI), 0.39 ± 0.05 (REA), 0.37 ± 0.04 (RFT), and 0.58 ± 0.05 (RFT8). Genetic correlations between RFI and carcass traits were low, ranging from -0.30 to 0.17, whereas a strong positive correlation was observed between RFI and DMI (0.77 ± 0.06). DMI showed low genetic correlations with carcass traits, ranging from -0.02 to 0.20, and a moderate to high correlation was found between RFT and RFT8 (0.66 ± 0.06) and between RFI and DMI (0.77 ± 0.06). Including feed efficiency and carcass traits in selection programs is feasible and important for improving both carcass quality and the profitability of production systems, as indicated by the heritability estimates.

Downloads

Download data is not yet available.

Author Biographies

Felipe Kenji Futema, Universidade Estadual Paulista (Unesp)

Undergraduate Student in Animal Science, Universidade Estadual Paulista, UNESP, São Paulo, SP, Brazil.

Kelvin Rodrigues Kelles, Norwegian University of Life Sciences

PhD Graduate of the Postgraduate Program in Animal Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.

Pedro Augusto Gaiki, Universidade do Oeste de Santa Catarina

Undergraduate Student in Veterinary Medicine, Universidade do Oeste de Santa Catarina, UNOESC, Santa Catarina, SC, Brazil.

Gabriel Rosalino Visentim, Universidade Estadual Paulista (Unesp)

Animal Scientist, UNESP, São Paulo, SP, Brazil.

Fernanda Larissa Cesar Santos, Universidade Estadual Paulista (Unesp)

PhD Graduate of the Postgraduate Program in Animal Science, UNESP, São Paulo, SP, Brazil.

John Scott Church, Thompson Rivers University

Prof. Dr., Thompson Rivers University, TRU, Kamloops, Canada.

Josineudson Augusto II de Vasconcelos Silva, Universidade Estadual Paulista (Unesp)

Prof. Dr., UNESP, São Paulo, SP, Brazil.

References

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93(2), 743-752. doi: 10.3168/jds.2009-2730 DOI: https://doi.org/10.3168/jds.2009-2730

Buzanskas, M. E., Pires, P. S., Chud, T. C. S., Bernardes, P. A., Rola, L. D., Savegnago, R. P., & Munari, D. P. (2017). Parameter estimates for reproductive and carcass traits in Nelore beef cattle. Theriogenology, 92, 204-209. doi: 10.1016/j.theriogenology.2016.09.057 DOI: https://doi.org/10.1016/j.theriogenology.2016.09.057

Cardoso, M. R. D., Marcuzzo, F. F. N., & Barros, J. R. (2014). Classificação climática de Köppen-Geiger para o estado de Goiás e o Distrito Federal. ACTA Geográfica, 8(16), 40-55. doi: 10.5654/actageo2014.0004.0016 DOI: https://doi.org/10.18227/2177-4307.acta.v8i16.1384

Ceacero, T. M., Mercadante, M. E. Z., Cyrillo, J. N. S. G., Canesin, R. C., Bonilha, S. F. M., & Albuquerque, L. G. (2016). Phenotypic and genetic correlations of feed efficiency traits with growth and carcass traits in Nellore cattle selected for postweaning weight. PLoS One, 11(9), e0161366. doi: 10.1371/journal.pone.0161366 DOI: https://doi.org/10.1371/journal.pone.0161366

De Los Campos, G., Pérez, P., Vazquez, A. I., & Crossa, J. (2013). Genome-enabled prediction using the BLR (Bayesian Linear Regression) R-package. Methods in Molecular Biology, 1019, 299-320. doi: 10.1007/978-1-62703-447-0_12 DOI: https://doi.org/10.1007/978-1-62703-447-0_12

Fernandes, G. A., Jr., Rosa, G. J. M., Valente, B. D., Carvalheiro, R., Baldi, F., & Garcia, D. A. (2016). Genomic prediction of breeding values for carcass traits in Nellore cattle. Genetics Selection Evolution, 48, 7. doi: 10.1186/s12711-016-0188-y DOI: https://doi.org/10.1186/s12711-016-0188-y

Freetly, H. C., Kuehn, L. A., Thallman, R. M., & Snelling, W. M. (2020). Heritability and genetic correlations of feed intake, body weight gain, residual gain, and residual feed intake of beef cattle as heifers and cows. Journal of Animal Science, 98(1), skz394. doi: 10.1093/jas/skz394 DOI: https://doi.org/10.1093/jas/skz394

Grigoletto, L., Perez, B. C., Santana, M. H. A., Baldi, F., & Ferraz, J. B. S. (2017). Genetic contribution of cytoplasmic lineage effect on feed efficiency in Nellore cattle. Livestock Science, 198, 52-57. doi: 10.1016/j.livsci.2017.02.009 DOI: https://doi.org/10.1016/j.livsci.2017.02.009

Instituto Brasileiro de Geografia e Estatística (2023). Rebanho de bovinos (bois e vacas) no ano de 2023. IBGE. https://www.ibge.gov.br/explica/producao-agropecuaria/bovinos/br

Kluska, S., Olivieri, B. F., Bonamy, M., Chiaia, H. L. J., Feitosa, F. L. B., Berton, M. P., & Baldi, F. (2018). Estimates of genetic parameters for growth, reproductive, and carcass traits in Nelore cattle using the single-step genomic BLUP procedure. Livestock Science, 216, 203-209. doi: 10.1016/j.livsci.2018.08.015 DOI: https://doi.org/10.1016/j.livsci.2018.08.015

Koch, R. M., Swiger, L. A., Chambers, D., & Gregory, K. E. (1963). Efficiency of feed use in beef cattle. Journal of Animal Science, 22(2), 486-494. doi: 10.2527/jas1963.222486x DOI: https://doi.org/10.2527/jas1963.222486x

Kruk, O., Ugnivenko, A., Antoniuk, T., Kolisnyk, O., Slobodyanyuk, N., Nosevych, D., Naumenko, T., & Gruntkovskyi, M. (2024). Evaluation of beef carcass quality using the muscle eye area M. longissimus dorsi. Potravinarstvo Slovak Journal of Food Sciences, 18(1), 619-632. doi: 10.5219/1989 DOI: https://doi.org/10.5219/1989

Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92(9), 4656-4663. doi: 10.3168/jds.2009-2061 DOI: https://doi.org/10.3168/jds.2009-2061

Martínez, R. A., Dassonneville, R., Bejarano, D., Jimenez, A., Even, G., Mészáros, G., & Sölkner, J. (2016). Direct and maternal genetic effects on growth, reproduction, and ultrasound traits in zebu Brahman cattle in Colombia. Journal of Animal Science, 94(7), 2761-2779. doi: 10.2527/jas.2016-0453 DOI: https://doi.org/10.2527/jas.2016-0453

Menezes, F. L., Araújo, C. V. de, Silva, F. G. da, Araújo, S. I., Laureano, M. M. M., Pavan, N. L., & Santana, L. M. K. (2022). Genetic associations between the selective criteria of beef cattle - literature review. Research, Society and Development, 11(14), e280111436177. doi: 10.33448/rsd-v11i14.36177 DOI: https://doi.org/10.33448/rsd-v11i14.36177

Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: a paradigm shift in animal breeding. Animal Frontiers, 6(1), 6-14. doi: 10.2527/af.2016-0002 DOI: https://doi.org/10.2527/af.2016-0002

Misztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 92(9), 4648-4655. doi: 10.3168/jds.2009-2064 DOI: https://doi.org/10.3168/jds.2009-2064

Misztal, I., Tsuruta, S., Lourenco, D., Masuda, Y., Aguilar, I., Legarra, A., & Vitezica, Z. G. (2014). Manual for BLUPF90 family of programs. University of Georgia.

Moraes, G. F., Abreu, L. R. A., Toral, F. L. B., Ferreira, I. C., Ventura, H. T., Bergmann, J. A. G., & Pereira, I. G. (2019). Selection for feed efficiency does not change the selection for growth and carcass traits in Nellore cattle. Journal of Animal Breeding and Genetics, 136(6), 464-473. doi: 10.1111/jbg.12423 DOI: https://doi.org/10.1111/jbg.12423

Neves, G. V. S., Sousa, J. C., Jr., Furquim, M. G. D., & Cruz, S. J. S. (2023). Bovinocultura de corte no Brasil: uma revisão sistemática de literatura. Revista Ibero-Americana de Ciências Ambientais, 13(6), 277-293. doi: 10.6008/CBPC2179-6858.2022.006.0022 DOI: https://doi.org/10.6008/CBPC2179-6858.2022.006.0022

Nichele, E. M., Moraes, E. H. B. K., Araújo, C. V., Pina, D. S., Moraes, K. A. K., & Hoffmann, A. (2015). Eficiência bioeconômica de bovinos de corte em confinamento. Revista Brasileira de Saúde e Produção Animal, 16(3), 699-711. doi: 10.1590/S1519-99402015000300020 DOI: https://doi.org/10.1590/S1519-99402015000300020

Novo, L. C., Gondo, A., Gomes, R. C., Fernades, J. A. Jr., Ribas, M. N., Brito, L. F., Laureano, M. M. M, Araújo, C. V., & Menezes, G. R. O. (2021). Genetic parameters for performance, feed efficiency, and carcass traits in Senepol heifers. Animal, 15(3), 100160. doi: 10.1016/j.animal.2020.100160 DOI: https://doi.org/10.1016/j.animal.2020.100160

Pereira, L. S., Brunes, L. C., Baldi, F., Carmo, A. S. do, Soares, B. B., Magnabosco, V., Eifer, E. C., & Magnabosco, C. U. (2023). Genetic association between feed efficiency, growth, scrotal circumference, and carcass traits in Guzerat cattle. Tropical Animal Health and Production, 55, 132. doi: 10.1007/s11250-023-03552-0 DOI: https://doi.org/10.1007/s11250-023-03552-0

Pires, B. C., Tholon, P., Buzanskas, M. E., Sbardella, A. P., Rosa, J. O., Campos da Silva, L. O., Torres, R. A. de A., Munari, D. P., & Mello de Alencar, M. (2017). Genetic analyses on bodyweight, reproductive, and carcass traits in composite beef cattle. Animal Production Science, 57(3), 415-421. doi: 10.1071/AN15458 DOI: https://doi.org/10.1071/AN15458

Polizel, G. H. G., Grigoletto, L., Carvalho, M. E., Rossi, P. Jr., Ferraz, J. B. S., & Almeida Santana, M. H. (2018). Genetic correlations and heritability estimates for dry matter intake, weight gain, and feed efficiency of Nellore cattle in feedlot. Livestock Science, 214, 209-210. doi: 10.1016/j.livsci.2018.06.013 DOI: https://doi.org/10.1016/j.livsci.2018.06.013

Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478. doi: 10.1186/1471-2164-15-478 DOI: https://doi.org/10.1186/1471-2164-15-478

SAS Institute Inc. Statistical analysis system V. 9.3. (2011). Cary, NC: SAS Institute Inc.

Silva, R. M. O., Fragomeni, B. O., Lourenco, D. A. L., Magalhães, A. F. B., Irano, N., Carvalheiro, R., Canesin, R. C., Mercadante, M. E. Z., Boligon, A. A., Baldi, F. S., Miztal, I., & Albuquerque, L. G. (2016). Accuracies of genomic prediction of feed efficiency traits using different prediction and validation methods in an experimental Nellore cattle population. Journal of Animal Science, 94(9), 3613-3623. doi: 10.2527/jas.2016-0401 DOI: https://doi.org/10.2527/jas.2016-0401

Silveira, D. D., Vargas, L., Pereira, R. J., Campos, G. S., Vaz, R. Z., Lôbo, R. B., Souza, F. R. P., & Boligon, A. A. (2019). Quantitative study of genetic gain for growth, carcass, and morphological traits of Nellore cattle. Canadian Journal of Animal Science, 99(2), 296-306. doi: 10.1139/cjas-2018-0078 DOI: https://doi.org/10.1139/cjas-2018-0078

Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11), 1-37. doi: 10.18637/jss.v021.i11 DOI: https://doi.org/10.18637/jss.v021.i11

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423. doi: 10.3168/jds.2007-0980 DOI: https://doi.org/10.3168/jds.2007-0980

Yokoo, M. J., Lobo, R. B., Magnabosco, C. U., Rosa, G. J. M., Forni, S., Sainz, R. D., & Albuquerque, L. G. (2015). Genetic correlation of traits measured by ultrasound at yearling and 18 months of age in Nellore beef cattle. Livestock Science, 180, 34-40. doi: 10.1016/j.livsci.2015.07.003 DOI: https://doi.org/10.1016/j.livsci.2015.07.003

Downloads

Published

2025-10-09

How to Cite

Futema, F. K., Kelles, K. R., Gaiki, P. A., Visentim, G. R., Santos, F. L. C., Church, J. S., & Silva, J. A. I. de V. (2025). Estimation of the genetic parameters for feed efficiency and carcass traits in Nellore bulls using a genomic matrix. Semina: Ciências Agrárias, 46(5), 1439–1450. https://doi.org/10.5433/1679-0359.2025v46n5p1439

Issue

Section

Articles