Dissociative anesthesia using ketamine combined with midazolam, dexmedetomidine, or both, with or without reversal, for orchiectomy in guinea pigs (Cavia porcellus)
DOI:
https://doi.org/10.5433/1679-0359.2025v46n5p1327Keywords:
Glucose, Heart rate, Post-anesthetic recovery, Respiratory rate, Sedation.Abstract
The increasing popularity of guinea pigs as pets and their high reproductive capacity have heightened demand for orchiectomy procedures. This study aimed to evaluate the effects of different anesthetic drug combinations on this species. Eighteen male Cavia porcellus (641 ± 135 g) were randomly assigned to three groups (n = 6) after baseline blood glucose measurement: ketamine (15 mg kg -1) combined with midazolam (1 mg kg -1) (M), dexmedetomidine (10 µg kg -1) (D), or half-doses of each (0.5 mg kg-1 midazolam and 5 µg kg -1 dexmedetomidine) (DM). After intramuscular administration, sedation was scored using two systems that assessed posture, response to stimuli, and muscle relaxation. Orchiectomy was then performed under aseptic conditions, with all animals receiving standardized supportive care, including thermal support via a heating mattress and continuous monitoring of vital parameters. A single veterinarian performed all surgeries to ensure consistency. Anesthesia was maintained with isoflurane (1 vol%) via face mask, adjusted by ± 0.25 vol% in response to manipulation and vital signs. Postoperatively, blood glucose was re-measured, and three animals from each group received antagonists: flumazenil (0.1 mg kg -1) in group M, atipamezole (50 µg kg -1) in group D, or half-doses of both drugs in group DM. Recovery was assessed using the blink reflex, time to ventral recumbency, and time to ambulation, with blood glucose levels measured again at the end of recovery. On one sedation scale, group D (score 19, range 18–19) exhibited significantly deeper sedation than group M (14.5, range 7–18), while group DM (18, range 9–19) did not differ significantly from either. Mean heart rate was highest in group M (249 ± 29) compared with groups D (184 ± 16) and DM (180 ± 21). Isoflurane concentration was lowest in group D (0.8 ± 0.2 vol%) compared with groups M (1.5 ± 0.4 vol%) and DM (1.4 ± 0.4 vol%). Antagonists reduced recovery time by 66% in group M, 30% in group D, and 48% in group DM, with significantly shorter times to ambulation observed in groups M and DM. Blood glucose levels did not differ significantly across groups. In conclusion, ketamine combined with dexmedetomidine provided deeper sedation, reduced isoflurane requirements, and, in the groups receiving dexmedetomidine, lowered heart rate compared with midazolam, whereas antagonist administration accelerated recovery in protocols containing midazolam.
Downloads
References
Aarnes, T. K., Dent, B. T., Lakritz, J., Kukanich, B., Wavreille, V. A., Lerche, P., Ricco Pereira, C. H., & Bednarski, R. M. (2023). Pharmacokinetics and pharmacodynamics of intramuscular dexmedetomidine in dogs. American Journal of Veterinary Research, 84(4), 1-5. doi: 10.2460/ajvr.22.10.0184 DOI: https://doi.org/10.2460/ajvr.22.10.0184
Allweiler, S. I. (2016). How to improve anesthesia and analgesia in small mammals. Veterinary Clinics of North America: Exotic Animal Practice, 19(2), 361-377. doi: 10.1016/j.cvex.2016.01.012 DOI: https://doi.org/10.1016/j.cvex.2016.01.012
Atalan, G., Erol, H., Atasever, A., Doğan, Z., Güneş, V., Yönez, M. K., & Keleş, I. (2019). Comparison of systemic effects of midazolam, ketamine and isoflurane anaesthesia in rabbits. Journal of Veterinary Research, 63(3), 275-283. doi: 10.2478/jvetres-2019-0035 DOI: https://doi.org/10.2478/jvetres-2019-0035
Avelino, J. A., Walsh, C. A., Wharton, K. N., Ekanayake, D., & Ekanayake-Alper, D. (2024). A comparison of three anesthetic drug combinations for inducing surgical anesthesia in female guinea pigs (Cavia porcellus). Journal of the American Association for Laboratory Animal Science, 63(2), 182-189. doi: 10.30802/AALAS-JAALAS-23-000064 DOI: https://doi.org/10.30802/AALAS-JAALAS-23-000064
Bailey, R. S., Barter, L. S., Pypendop, B. H., & Wilson, R. P. (2017). Pharmacokinetics of dexmedetomidine in isoflurane-anesthetized New Zealand White rabbits. Veterinary Anaesthesia and Analgesia, 44(6), 876-882. doi: 10.1016/j.vaa.2017.01.003 DOI: https://doi.org/10.1016/j.vaa.2017.01.003
Bellini, L., Banzato, T., Contiero, B., & Zotti, A. (2014). Evaluation of sedation and clinical effects of midazolam with ketamine or dexmedetomidine in pet rabbits. Veterinary Record, 175(15), 372. doi: 10.1136/vr.102595 DOI: https://doi.org/10.1136/vr.102595
Bennett, K., & Lewis, K. (2022). Sedation and anesthesia in rodents. Veterinary Clinics of North America: Exotic Animal Practice, 25(2), 211-255. doi: 10.1016/j.cvex.2021.08.013 DOI: https://doi.org/10.1016/j.cvex.2021.08.013
Bienert, A., Płotek, W., Wiczling, P., Warzybok, J., Borowska, K., Buda, K., Kulińska, K., Billert, H., Kaliszan, R., & Grześkowiak, E. (2014). The influence of age and dosage on the pharmacodynamics of dexmedetomidine in rabbits. Journal of Medical Science, 83(2), 108-115. doi: 10.20883/medical.e53 DOI: https://doi.org/10.20883/medical.e53
Boehm, C. A., Carney, E. L., Tallarida, R. J., & Wilson, R. P. (2010). Midazolam enhances the analgesic properties of dexmedetomidine in the rat. Veterinary Anaesthesia and Analgesia, 37(6), 550-556. doi: 10.1111/j.1467-2995.2010.00565.x DOI: https://doi.org/10.1111/j.1467-2995.2010.00565.x
Cantwell, S. L. (2001). Ferret, rabbit, and rodent anesthesia. Veterinary Clinics of North America: Exotic Animal Practice, 4(1), 169-191. doi: 10.1016/S1094-9194(17)30056-7 DOI: https://doi.org/10.1016/S1094-9194(17)30056-7
Connell, A. R., Hookham, M. B., Fu, D., Brazil, D. P., Lyons, T. J., & Yu, J. Y. (2022). Comparisons of α₂-adrenergic agents, medetomidine and xylazine, with pentobarbital for anesthesia: important pitfalls in diabetic and nondiabetic rats. Journal of Ocular Pharmacology and Therapeutics, 38(2), 156-166. doi: 10.1089/jop.2021.0084 DOI: https://doi.org/10.1089/jop.2021.0084
Cruz, J. I., Loste, J. M., & Burzaco, O. H. (1998). Observations on the use of medetomidine/ketamine and its reversal with atipamezole for chemical restraint in the mouse. Laboratory Animals, 32(1), 18-22. doi: 10.1258/0023677987805593 DOI: https://doi.org/10.1258/002367798780559383
Doerning, C. M., Bradley, M. P., Lester, P. A., & Nowland, M. H. (2018). Effects of subcutaneous alfaxalone alone and in combination with dexmedetomidine and buprenorphine in guinea pigs (Cavia porcellus). Veterinary Anaesthesia and Analgesia, 45(5), 658-666. doi: 10.1016/j.vaa.2018.06.004 DOI: https://doi.org/10.1016/j.vaa.2018.06.004
Fox, L., Snyder, L. B. C., & Mans, C. (2016). Comparison of dexmedetomidine-ketamine with isoflurane for anesthesia of chinchillas (Chinchilla lanigera). Journal of the American Association for Laboratory Animal Science, 55(3), 312-316. PMID: 27177565
Gasparik-Küls, N., Larenza, M. P., & Rocchi, A. (2023). Use of a propofol infusion for anaesthetic maintenance in guinea pigs (Cavia porcellus): a retrospective case series. Veterinary Anaesthesia and Analgesia, 50(4), 498-501. doi: 10.1016/j.vaa.2023.06.005 DOI: https://doi.org/10.1016/j.vaa.2023.06.005
Grint, N. J., & Murison, P. J. (2008). A comparison of ketamine-midazolam and ketamine-medetomidine combinations for induction of anaesthesia in rabbits. Veterinary Anaesthesia and Analgesia, 35(2), 113-121. doi: 10.1111/j.1467-2995.2007.00362.x DOI: https://doi.org/10.1111/j.1467-2995.2007.00362.x
Isaza, N. M., & Isaza, R. (2020). Neutering procedures and considerations in rabbits and other small mammals. In S. White (Ed.), High-quality, high-volume spay and neuter and other shelter surgeries (vol. 1, pp. 295-323). Hoboken. doi: 10.1002/9781119646006 DOI: https://doi.org/10.1002/9781119646006.ch15
Kaiser, S., Korte, A., Wistuba, J., Baldy, M., Wissmann, A., Dubičanac, M., Richter, S. H., & Sachser, N. (2023). Effects of castration and sterilization on baseline and response levels of cortisol A case study in male guinea pigs. Frontiers in Veterinary Science, 9(6), 1093157. doi: 10.3389/fvets.2022.1093157 DOI: https://doi.org/10.3389/fvets.2022.1093157
Kawano, T., Takahashi, T., Kaminaga, S., Kadono, T., Yamanaka, D., Iwata, H., Eguchi, S., & Yokoyama, M. (2015). A comparison of midazolam and dexmedetomidine for recovery of serotonin syndrome in rats. Journal of Anesthesia, 29(5), 631-634. doi: 10.1007/s00540-014-1973-9 DOI: https://doi.org/10.1007/s00540-014-1973-9
Kint, L. T., Seewoo, B. J., Hyndman, T. H., Clarke, M. W., Edwards, S. H., Rodger, J., Feindel, K. W., & Musk, G. C. (2020). The pharmacokinetics of medetomidine administered subcutaneously during isoflurane anesthesia in Sprague-Dawley rats. Animals, 10(6), 1050. doi: 10.3390/ani10061050 DOI: https://doi.org/10.3390/ani10061050
Lennox, A. M., & Capello, V. (2008). Tracheal intubation in exotic companion mammals. Journal of Exotic Pet Medicine, 17(3), 221-227. doi: 10.1053/j.jepm.2008.05.009 DOI: https://doi.org/10.1053/j.jepm.2008.05.009
Murrell, J. C., & Hellebrekers, L. J. (2005). Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Veterinary Anaesthesia and Analgesia, 32(3), 117-127. doi: 10.1111/j.1467-2995.2005.00233.x DOI: https://doi.org/10.1111/j.1467-2995.2005.00233.x
Okur, S., Yanmaz, L. E., Golgeli, A., Senocak, M. G., Ersoz, U., Orhun, O. T., & Gumurcinler, B. (2023). Sedative and cardiopulmonary effects of intranasal butorphanol with midazolam or dexmedetomidine in New Zealand White rabbits. Veterinary Record, 193(1), e2999. doi: 10.1002/vetr.2999 DOI: https://doi.org/10.1002/vetr.2999
Rabe, H. (2011). Reference ranges for biochemical parameters in guinea pigs for the Vettest® 8008 blood analyzer. Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere, 39(3), 170-175. PMID: 22143626 DOI: https://doi.org/10.1055/s-0038-1623575
Ríos Álvarez, E., Vilalta Solé, L., & García de Carellán Mateo, A. (2022). Comparison of subcutaneous sedation with alfaxalone or alfaxalone-midazolam in pet guinea pigs (Cavia porcellus) of three different age groups. Journal of the American Veterinary Medical Association, 260(9), 1024-1030. doi: 10.2460/javma.21.02.0104 DOI: https://doi.org/10.2460/javma.21.02.0104
Rondeau, A., Langlois, I., Pang, D. S., & Leung, V. S. Y. (2020). Development of a sedation assessment scale for comparing the sedative effects of alfaxalone-hydromorphone and ketamine-midazolam-hydromorphone for intravenous catheterization in the domestic rat (Rattus norvegicus). Journal of Exotic Pet Medicine, 35(2), 117-122. doi: 10.1053/j.jepm.2020.09.004 DOI: https://doi.org/10.1053/j.jepm.2020.09.004
Rousseau-Blass, F., Cribb, A. E., Beaudry, F., & Pang, D. S. J. (2021). A pharmacokinetic-pharmacodynamic study of intravenous midazolam and flumazenil in adult New Zealand White Californian rabbits (Oryctolagus cuniculus). Journal of the American Association for Laboratory Animal Science, 60(3), 319-328. doi: 10.30802/AALAS-JAALAS-20-000084 DOI: https://doi.org/10.30802/AALAS-JAALAS-20-000084
Scarabelli, S., & Nardini, G. (2019). Basic principles of anaesthesia of small mammals: Part 1. Companion Animal, 24(5), 271-276. doi: 10.12968/coan.2019.24.5.271 DOI: https://doi.org/10.12968/coan.2019.24.5.271
Scarabelli, S., & Nardini, G. (2020). Basic principles of anaesthesia of small mammals: Part 2. Companion Animal, 25(1), 1-8. doi: 10.12968/coan.2019.0064 DOI: https://doi.org/10.12968/coan.2019.0064
Schmitz, S., Henke, J., Tacke, S., & Guth, B. (2016a). Successful implantation of an abdominal aortic blood pressure transducer and radio-telemetry transmitter in guinea pigs Anaesthesia, analgesic management and surgical methods, and their influence on hemodynamic parameters and body temperature. Journal of Pharmacological and Toxicological Methods, 80(1), 9-18. doi: 10.1016/j.vascn.2016.03.003 DOI: https://doi.org/10.1016/j.vascn.2016.03.003
Schmitz, S., Tacke, S., Guth, B., & Henke, J. (2016b). Comparison of physiological parameters and anaesthesia-specific observations during isoflurane, ketamine-xylazine or medetomidine-midazolam-fentanyl anaesthesia in male guinea pigs. PLoS One, 11(8), e0161258. doi: 10.1371/journal.pone.0161258 DOI: https://doi.org/10.1371/journal.pone.0161258
Schmitz, S., Tacke, S., Guth, B., & Henke, J. (2017). Repeated anaesthesia with isoflurane and medetomidine-midazolam-fentanyl in guinea pigs and its influence on physiological parameters. PLoS One, 12(4), e0174423. doi: 10.1371/journal.pone.0174423 DOI: https://doi.org/10.1371/journal.pone.0174423
Schwartz, M., Muñana, K. R., Nettifee-Osborne, J. A., Messenger, K. M., & Papich, M. G. (2013). The pharmacokinetics of midazolam after intravenous, intramuscular and rectal administration in healthy dogs. Journal of Veterinary Pharmacology and Therapeutics, 36(5), 471-477. doi: 10.1111/jvp.12032 DOI: https://doi.org/10.1111/jvp.12032
Serighelli, G., Jr., Comassetto, F., Stiehl, M. Z., & Oleskovicz, N. (2024). Evaluation of two protocols for chemical restraint in guinea pigs (Cavia porcellus). Archives of Veterinary Science, 29(3), e96398. doi: 10.5380/avs.v29i3.96398 DOI: https://doi.org/10.5380/avs.v29i3.96398
Shomer, N. H., Holcombe, H., & Harkness, J. E. (2015). Biology and diseases of guinea pigs. In J. G. Fox, L. C. Anderson, G. M. Otto, K. R. Pritchett-Corning, & M. T. Whary (Eds.), Laboratory animal medicine (3nd ed., pp. 247-283). Amsterdam. doi: 10.1016/B978-0-12-409527-4.00006-7 DOI: https://doi.org/10.1016/B978-0-12-409527-4.00006-7
Sixtus, R. P., Pacharinsak, C., Gray, C. L., Berry, M. J., & Dyson, R. M. (2021). Differential effects of four intramuscular sedatives on cardiorespiratory stability in juvenile guinea pigs (Cavia porcellus). PLoS One, 16(12), e0259559. doi: 10.1371/journal.pone.0259559 DOI: https://doi.org/10.1371/journal.pone.0259559
Wang, X., Xiang, P., Drummer, O. H., Ji, J., Zhuo, Y., Duan, G., & Shen, M. (2021). Pharmacokinetic study of midazolam and α-hydroxymidazolam in guinea pig blood and hair roots after a single dose of midazolam. Journal of Pharmaceutical and Biomedical Analysis, 195, 113890. doi: 10.1016/j.jpba.2021.113890 DOI: https://doi.org/10.1016/j.jpba.2021.113890
Wharton, K. N., Walsh, C. A., Haulter, M., Ekanayake, D., & Ekanayake-Alper, D. (2024). Sedation efficacy of midazolam in conjunction with ketamine and alfaxalone in female laboratory guinea pigs (Cavia porcellus). Journal of the American Association for Laboratory Animal Science, 63(5), 572-580. doi: 10.30802/AALAS-JAALAS-24-000028 DOI: https://doi.org/10.30802/AALAS-JAALAS-24-000028
Zimmerman, K., Moore, D. M., & Smith, S. A. (2015). Hematological assessment in pet guinea pigs (Cavia porcellus): blood sample collection and blood cell identification. Veterinary Clinics of North America: Exotic Animal Practice, 18(1), 33-40. doi: 10.1016/j.cvex.2014.09.002 DOI: https://doi.org/10.1016/j.cvex.2014.09.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gustavo Antônio Boff, Luã Borges Iepsen, Ana Paula Morel, Mical Cipriano Felipe, Marta Priscila Vogt, Fabiane Borelli Grecco, Martielo Ivan Gehrcke

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











